Search results
Results from the WOW.Com Content Network
The direct stiffness method originated in the field of aerospace. Researchers looked at various approaches for analysis of complex airplane frames. These included elasticity theory, energy principles in structural mechanics, flexibility method and matrix stiffness method. It was through analysis of these methods that the direct stiffness method ...
The full stiffness matrix A is the sum of the element stiffness matrices. In particular, for basis functions that are only supported locally, the stiffness matrix is sparse. For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices.
The origin of finite method can be traced to the matrix analysis of structures [1] [2] where the concept of a displacement or stiffness matrix approach was introduced. Finite element concepts were developed based on engineering methods in 1950s.
Mathematically, this requires a stiffness matrix to have full rank. A statically indeterminate structure can only be analyzed by including further information like material properties and deflections. Numerically, this can be achieved by using matrix structural analyses, finite element method (FEM) or the moment distribution method (Hardy Cross) .
Elastic constants are specific parameters that quantify the stiffness of a material in response to applied stresses and are fundamental in defining the elastic properties of materials. These constants form the elements of the stiffness matrix in tensor notation, which relates stress to strain through linear equations in anisotropic materials.
K is the symmetric bearing or seal stiffness matrix; N is the gyroscopic matrix of deflection for inclusion of e.g., centrifugal elements; q(t) is the generalized coordinates of the rotor in inertial coordinates; f(t) is a forcing function, usually including the unbalance. The gyroscopic matrix G is proportional to spin speed Ω.
For comparison purposes, the following are the results generated using a matrix method. Note that in the analysis above, the iterative process was carried to >0.01 precision. The fact that the matrix analysis results and the moment distribution analysis results match to 0.001 precision is mere coincidence.
here is the mass matrix, is the damping matrix, and are internal force per unit displacement and external forces, respectively. Using the extended mean value theorem , the Newmark- β {\displaystyle \beta } method states that the first time derivative (velocity in the equation of motion ) can be solved as,