Search results
Results from the WOW.Com Content Network
The proposed system involves converting the input image into a format such that the number of objects can be calculated based on the connected components present in the enhanced image. This project work also aims at determining the correct value of density by clearing the objects touching the borders of the image.
In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.The method was invented by John Platt in the context of support vector machines, [1] replacing an earlier method by Vapnik, but can be applied to other classification models. [2]
The probability content of a log-normal distribution in any arbitrary domain can be computed to desired precision by first transforming the variable to normal, then numerically integrating using the ray-trace method. [15] (Matlab code)
It is a generalization of the gamma distribution which has one shape parameter (and a scale parameter). Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution , the Weibull distribution and the gamma distribution ) are special cases of the generalized gamma, it is sometimes used ...
Animation showing the effects of a scale parameter on a probability distribution supported on the positive real line. Effect of a scale parameter over a mixture of two normal probability distributions. If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only ...
The Gompertz distribution is a flexible distribution that can be skewed to the right and to the left. Its hazard function = is a convex function of (;,).The model can be fitted into the innovation-imitation paradigm with = as the coefficient of innovation and as the coefficient of imitation.
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the
Plot of probit function. In probability theory and statistics, the probit function is the quantile function associated with the standard normal distribution.It has applications in data analysis and machine learning, in particular exploratory statistical graphics and specialized regression modeling of binary response variables.