Search results
Results from the WOW.Com Content Network
Thyroid function tests (TFTs) is a collective term for blood tests used to check the function of the thyroid. [1] TFTs may be requested if a patient is thought to suffer from hyperthyroidism (overactive thyroid) or hypothyroidism (underactive thyroid), or to monitor the effectiveness of either thyroid-suppression or hormone replacement therapy.
TSH levels are determined by a classic negative feedback system in which high levels of T3 and T4 suppress the production of TSH, and low levels of T3 and T4 increase the production of TSH. TSH levels are thus often used by doctors as a screening test, where the first approach is to determine whether TSH is elevated, suppressed, or normal. [25]
The TSH, in turn, stimulates the thyroid to produce thyroid hormone until levels in the blood return to normal. Thyroid hormone exerts negative feedback control over the hypothalamus as well as anterior pituitary, thus controlling the release of both TRH from hypothalamus and TSH from anterior pituitary gland.
Affected patients may have normal, low, or slightly elevated TSH depending on the spectrum and phase of illness. Total T4 and T3 levels may be altered by binding protein abnormalities, and medications. Reverse T3 levels are generally increased, while FT3 is decreased. FT4 levels may have a transient increase, before becoming subnormal during ...
Blood free thyroxine and TSH levels are monitored to help determine whether the dose is adequate. This is done 4–8 weeks after the start of treatment or a change in levothyroxine dose. Once the adequate replacement dose has been established, the tests can be repeated after 6 and then 12 months, unless there is a change in symptoms. [ 8 ]
TSH concentrations are measured as part of a thyroid function test in patients suspected of having an excess (hyperthyroidism) or deficiency (hypothyroidism) of thyroid hormones. Interpretation of the results depends on both the TSH and T 4 concentrations. In some situations measurement of T 3 may also be useful.
The major form of thyroid hormone in the blood is thyroxine (T 4), whose half-life of around one week [4] is longer than that of T 3. [5] In humans, the ratio of T 4 to T 3 released into the blood is approximately 14:1. [6] T 4 is converted to the active T 3 (three to four times more potent than T 4) within cells by deiodinases (5′-deiodinase).
A low amount of thyroxine (one of the two thyroid hormones) in the blood, due to lack of dietary iodine to make it, gives rise to high levels of thyroid stimulating hormone (TSH), which stimulates the thyroid gland to increase many biochemical processes; the cellular growth and proliferation can result in the characteristic swelling or hyperplasia of the thyroid gland or goiter.