Search results
Results from the WOW.Com Content Network
Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]
The bleached profile will not be a radial step function. If the bleached spot is effectively a single pixel then the bleaching as a function of position will typically be diffraction limited and determined by the optics of the confocal laser scanning microscope used. This is not a radial step function and also varies along the axis ...
An example of an experimentally derived point spread function from a confocal microscope using a 63x 1.4NA oil objective. It was generated using Huygens Professional deconvolution software. Shown are views in xz, xy, yz and a 3D representation. In microscopy, experimental determination of PSF requires sub-resolution (point-like) radiating sources.
As an example, the figure on the right shows the 3D point-spread function in object space of a wide-field microscope (a) alongside that of a confocal microscope (c). Although the same microscope objective with a numerical aperture of 1.49 is used, it is clear that the confocal point spread function is more compact both in the lateral dimensions ...
Diagram illustrating near-field optics, with the diffraction of light coming from NSOM fiber probe, showing wavelength of light and the near-field. [1] Comparison of photoluminescence maps recorded from a molybdenum disulfide flake using NSOM with a campanile probe (top) and conventional confocal microscopy (bottom). Scale bars: 1 μm. [2]
A classic example is the way that shadows 'hug' the corners of rooms. Ray tracing Ray tracing is an extension of the same technique developed in scanline rendering and ray casting. Like those, it handles complicated objects well, and the objects may be described mathematically.
[1] [2] A fluorescence microscope is any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image. [3]
TEM Ray Diagram with Phase Contrast Transfer Function. Contrast transfer theory provides a quantitative method to translate the exit wavefunction to a final image. Part of the analysis is based on Fourier transforms of the electron beam wavefunction. When an electron wavefunction passes through a lens, the wavefunction goes through a Fourier ...