Search results
Results from the WOW.Com Content Network
The constraint equations for a kinematic chain are obtained using rigid transformations [Z] to characterize the relative movement allowed at each joint and separate rigid transformations [X] to define the dimensions of each link. In the case of a serial open chain, the result is a sequence of rigid transformations alternating joint and link ...
The movement of a body, or link, is studied using geometry so the link is considered to be rigid. [1] The connections between links are modeled as providing ideal movement, pure rotation or sliding for example, and are called joints. A linkage modeled as a network of rigid links and ideal joints is called a kinematic chain.
A fundamental tool in robot kinematics is the kinematics equations of the kinematic chains that form the robot. These non-linear equations are used to map the joint parameters to the configuration of the robot system. Kinematics equations are also used in biomechanics of the skeleton and computer animation of articulated characters.
Watt's linkage consists of three bars bolted together in a chain. The chain of bars consists of two end bars and a middle bar. The middle bar is bolted at each of its ends to one of the ends of each outer bar. The two outer bars are of equal length, and are longer than the middle bar. The three bars can pivot around the two bolts.
In classical mechanics, a kinematic pair is a connection between two physical objects that imposes constraints on their relative movement . German engineer Franz Reuleaux introduced the kinematic pair as a new approach to the study of machines [ 1 ] that provided an advance over the notion of elements consisting of simple machines .
In this convention, coordinate frames are attached to the joints between two links such that one transformation is associated with the joint [Z ], and the second is associated with the link [X ]. The coordinate transformations along a serial robot consisting of n links form the kinematics equations of the robot: [] = [] [] [] [] …
Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engineering, robotics, and biomechanics, [7] kinematics is used to describe the motion of systems composed of joined parts (multi-link systems) such as an engine, a robotic arm or the human skeleton.
The kinematics equations for the series chain of a robot are obtained using a rigid transformation [Z] to characterize the relative movement allowed at each joint and separate rigid transformation [X] to define the dimensions of each link. The result is a sequence of rigid transformations alternating joint and link transformations from the base ...