enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Kirchhoff's law of thermal radiation has a refinement in that not only is thermal emissivity equal to absorptivity, it is equal in detail. Consider a leaf. It is a poor absorber of green light (around 470 nm), which is why it looks green. By the principle of detailed balance, it is also a poor emitter of green light.

  3. Anders Jonas Ångström - Wikipedia

    en.wikipedia.org/wiki/Anders_Jonas_Ångström

    Ångström is also well known for his studies of astrophysics, heat transfer, terrestrial magnetism, and the aurora borealis. In 1852, Ångström formulated in Optiska undersökningar (Optical investigations), [2] a law of absorption, later modified somewhat and known as Kirchhoff's law of thermal radiation. [citation needed]

  4. Gustav Kirchhoff - Wikipedia

    en.wikipedia.org/wiki/Gustav_Kirchhoff

    Gustav Robert Kirchhoff (German: [ˈgʊs.taf ˈkɪʁçhɔf]; 12 March 1824 – 17 October 1887) was a German physicist, chemist and mathematican who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.

  5. Idealized greenhouse model - Wikipedia

    en.wikipedia.org/wiki/Idealized_greenhouse_model

    A key to understanding the greenhouse effect is Kirchhoff's law of thermal radiation. At any given wavelength the absorptivity of the atmosphere will be equal to the emissivity. Radiation from the surface could be in a slightly different portion of the infrared spectrum than the radiation emitted by the atmosphere.

  6. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    In 1860, Gustav Kirchhoff published a mathematical description of thermal equilibrium (i.e. Kirchhoff's law of thermal radiation). [16]: 275–301 By 1884 the emissive power of a perfect blackbody was inferred by Josef Stefan using John Tyndall's experimental measurements, and derived by Ludwig Boltzmann from fundamental statistical principles ...

  7. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    Thus Kirchhoff's law of thermal radiation can be stated: For any material at all, radiating and absorbing in thermodynamic equilibrium at any given temperature T, for every wavelength λ, the ratio of emissive power to absorptivity has one universal value, which is characteristic of a perfect black body, and is an emissive power which we here ...

  8. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    Kirchhoff's law of thermal radiation is a succinct and brief account of a complicated physical situation. The following is an introductory sketch of that situation, and is very far from being a rigorous physical argument. The purpose here is only to summarize the main physical factors in the situation, and the main conclusions.

  9. Radiative equilibrium - Wikipedia

    en.wikipedia.org/wiki/Radiative_equilibrium

    When there is enough matter in a region to allow molecular collisions to occur very much more often than absorption or emission of photons, for radiation one speaks of local thermodynamic equilibrium (LTE). In this case, Kirchhoff's law of equality of radiative absorptivity and emissivity holds. [24]