Search results
Results from the WOW.Com Content Network
The Lyapunov time mirrors the limits of the predictability of the system. By convention, it is defined as the time for the distance between nearby trajectories of the system to increase by a factor of e. However, measures in terms of 2-foldings and 10-foldings are sometimes found, since they correspond to the loss of one bit of information or ...
In 1930 O. Perron constructed an example of a second-order system, where the first approximation has negative Lyapunov exponents along a zero solution of the original system but, at the same time, this zero solution of the original nonlinear system is Lyapunov unstable. Furthermore, in a certain neighborhood of this zero solution almost all ...
Linear Time Invariant (LTI) Systems are those systems in which the parameters , , and are invariant with respect to time. One can observe if the LTI system is or is not controllable simply by looking at the pair ( A , B ) {\displaystyle ({\boldsymbol {A}},{\boldsymbol {B}})} .
Lyapunov fractal, bifurcational fractals derived from an extension of the logistic map in which the degree of the growth of the population periodically switches between two values; Lyapunov time, characteristic timescale on which a dynamical system is chaotic; Probability theory, the branch of mathematics concerned with probability
The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is
It would have given the Warriors a free throw and possession of the ball, which could have changed the game with them trailing 119-115 at the time. But instead of a tech, the refs called for a ...
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).