Ads
related to: t7 rna polymerase elisa kitapexbt.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In biotechnology applications, T7 RNA polymerase is commonly used to transcribe DNA that has been cloned into vectors that have two (different) phage promoters (e.g., T7 and T3, or T7 and SP6) in opposite orientation. RNA can be selectively synthesized from either strand of the insert DNA with the different polymerases.
(This polymerase originates from the T7 phage, a bacteriophage virus which infects E. coli bacterial cells and is capable of integrating its DNA into the host DNA, as well as overriding its cellular machinery to produce more copies of itself.) T7 RNA polymerase is responsible for beginning transcription at the T7 promoter of the transformed vector.
T7 RNA polymerase binds to the promoter region on the double strand. Since T7 RNA polymerase can only transcribe in the 3' to 5' direction [15] the sense DNA is transcribed and an anti-sense RNA is produced. This is repeated, and the polymerase continuously produces complementary RNA strands of this template which results in amplification.
T7 DNA polymerase is an enzyme used during the DNA replication of the T7 bacteriophage. During this process, the DNA polymerase “reads” existing DNA strands and creates two new strands that match the existing ones. The T7 DNA polymerase requires a host factor, E. coli thioredoxin, [1] in order to carry out its function
The T7 promoter sequence is used extensively in molecular biology due to its extremely high affinity for T7 RNA polymerase and thus high level of expression. [3] [2] T7 has been used as a model in synthetic biology. Chan et al. (2005) "refactored" the genome of T7, replacing approximately 12 kbp of its genome with engineered DNA. [15]
Abortive initiation is a normal process of transcription and occurs both in vitro and in vivo. [2] After each nucleotide-addition step in initial transcription, RNA polymerase, stochastically, can proceed on the pathway toward promoter escape (productive initiation) or can release the RNA product and revert to the RNA polymerase-promoter open complex (abortive initiation).
Ads
related to: t7 rna polymerase elisa kitapexbt.com has been visited by 10K+ users in the past month