Search results
Results from the WOW.Com Content Network
At about 891 kJ/mol, methane's heat of combustion is lower than that of any other hydrocarbon, but the ratio of the heat of combustion (891 kJ/mol) to the molecular mass (16.0 g/mol, of which 12.0 g/mol is carbon) shows that methane, being the simplest hydrocarbon, produces more heat per mass unit (55.7 kJ/g) than other complex hydrocarbons.
The flames caused as a result of a fuel undergoing combustion (burning) Air pollution abatement equipment provides combustion control for industrial processes.. Combustion, or burning, [1] is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke.
This is illustrated in the image here, where the balanced equation is: CH 4 + 2 O 2 → CO 2 + 2 H 2 O. Here, one molecule of methane reacts with two molecules of oxygen gas to yield one molecule of carbon dioxide and two molecules of water. This particular chemical equation is an example of complete combustion. Stoichiometry measures these ...
The combustion of a stoichiometric mixture of fuel and oxidizer (e.g. two moles of hydrogen and one mole of oxygen) in a steel container at 25 °C (77 °F) is initiated by an ignition device and the reactions allowed to complete. When hydrogen and oxygen react during combustion, water vapor is produced.
Any mixture of methane and air will therefore lie on the straight line between pure methane and pure air – this is shown as the blue air-line. The upper and lower flammability limits of methane in air are located on this line, as shown (labelled UEL and LEL, respectively). The stoichiometric combustion of methane is: CH 4 + 2O 2 → CO 2 + 2H ...
If we make the assumption that combustion goes to completion (i.e. forming only CO 2 and H 2 O), we can calculate the adiabatic flame temperature by hand either at stoichiometric conditions or lean of stoichiometry (excess air). This is because there are enough variables and molar equations to balance the left and right hand sides,
Peters four-step chemistry is a systematically reduced mechanism for methane combustion, named after Norbert Peters, who derived it in 1985. [1] [2] [3] The mechanism reads as [4]
This image of a simple chemical equation is ineligible for copyright and therefore in the public domain, because it consists entirely of information that is common property and contains no original authorship.