Search results
Results from the WOW.Com Content Network
Aminoacyl-tRNA synthetases have been kinetically studied, showing that Mg 2+ ions play an active catalytic role and therefore aaRs have a degree of magnesium dependence. Increasing the Mg 2+ concentration leads to an increase in the equilibrium constants for the aminoacyl-tRNA synthetases’ reactions. Although this trend was seen in both class ...
The aminoacyl-tRNA synthetases catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have limited sequence homology. [1] The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II.
An aminoacyl-tRNA, with the tRNA above the arrow and a generic amino acid below the arrow. Most of the tRNA structure is shown as a simplified, colorful ball-and-stick model; the terminal adenosine and the amino acid are shown as structural formulas. The arrow indicates the ester linkage between the amino acid and tRNA.
Aminoacyl-tRNA synthetases, class II is a family of proteins. These proteins catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have a limited sequence homology .
The aminoacyl-tRNA synthetases can distinguish between different tRNAs and this recognition doesn't follow the same pattern. An aminoacyl-tRNA synthetase recognizes a set of sequentinal elements and binds tRNA with the respective amino acid. Examples of these elements vary: 1 base in the anticodon, 1 of 3 base pairs in the acceptor stem and others.
Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids. Lysyl-tRNA synthetase is a homodimer localized to the cytoplasm which belongs to the class II family of tRNA synthetases. It has been shown to be a target of autoantibodies in the human autoimmune diseases, polymyositis or dermatomyositis [7]
The amino acid loaded onto the tRNA by aminoacyl tRNA synthetases, to form aminoacyl-tRNA, is covalently bonded to the 3′-hydroxyl group on the CCA tail. [9] This sequence is important for the recognition of tRNA by enzymes and critical in translation. [10] [11] In prokaryotes, the CCA sequence is transcribed in some tRNA sequences. In most ...
This characteristic of the recognition between YARS and tRNA(Tyr) has been used to obtain aminoacyl-tRNA synthetases that can specifically charge non-sense suppressor derivatives of tRNA(Tyr) with unnatural aminoacids in vivo without interfering with the normal process of translation in the cell. [28]