enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    Sometimes, the inverse of a function cannot be expressed by a closed-form formula. For example, if f is the function = ⁡, then f is a bijection, and therefore possesses an inverse function f −1. The formula for this inverse has an expression as an infinite sum:

  3. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  4. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  5. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".

  6. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Actually, the machinery from analytic function theory enters only in a formal way in this proof, in that what is really needed is some property of the formal residue, and a more direct formal proof is available. In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting ...

  7. Converse relation - Wikipedia

    en.wikipedia.org/wiki/Converse_relation

    Although many functions do not have an inverse, every relation does have a unique converse. The unary operation that maps a relation to the converse relation is an involution , so it induces the structure of a semigroup with involution on the binary relations on a set, or, more generally, induces a dagger category on the category of relations ...

  8. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  9. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.