Search results
Results from the WOW.Com Content Network
2-Methyl-3-pentanol (IUPAC name: 2-methylpentan-3-ol) is an organic chemical compound. It is a secondary alcohol [2] that is used as a fuel. [3] References
The conversion of ethanol to ethylene is a fundamental example: [3] [4] CH 3 CH 2 OH → H 2 C=CH 2 + H 2 O. The reaction is accelerated by acid catalysts such as sulfuric acid and certain zeolites. These reactions often proceed via carbocation intermediates as shown for the dehydration of cyclohexanol. [5] Some alcohols are prone to dehydration.
2-Methyl-3-pentanol; 3-Methyl-3-pentanol; 2,2-Dimethyl-1-butanol; 2,3-Dimethyl-1-butanol; 3,3-Dimethyl-1-butanol This page was last edited on 27 ...
In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl (C=O) functional group by formaldehyde (H−CHO) and a primary or secondary amine (−NH 2) or ammonia (NH 3). [1] The final product is a β-amino-carbonyl compound also known as a Mannich base.
When necessary, the position of the hydroxyl group is indicated by a number between the alkane name and the -ol: propan-1-ol for CH 3 CH 2 CH 2 OH, propan-2-ol for CH 3 CH(OH)CH 3. If a higher priority group is present (such as an aldehyde , ketone , or carboxylic acid ), then the prefix hydroxy- is used, [ 19 ] e.g., as in 1-hydroxy-2 ...
For these two reactions, there are 3 possible products, 3-methyl-cyclohexene,1-methyl-cyclohexene, methylene-cyclohexane. The production of each of these occurs at different rates and the ratios of these also change over time. It is well known that the dehydration of the cis isomer is 30 times faster than the trans isomer.
Three of these alcohols, 2-methyl-1-butanol, 2-pentanol, and 3-methyl-2-butanol (methyl isopropyl carbinol), contain stereocenters, and are therefore chiral and optically active. The most important amyl alcohol is isoamyl alcohol , the chief one generated by fermentation in the production of alcoholic beverages and a constituent of fusel oil .
Oppenauer oxidation mechanism. In the first step of this mechanism, the alcohol (1) coordinates to the aluminium to form a complex (3), which then, in the second step, gets deprotonated by an alkoxide ion (4) to generate an alkoxide intermediate (5). In the third step, both the oxidant acetone (7) and the substrate alcohol are bound to the ...