Search results
Results from the WOW.Com Content Network
Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem (including the version of Case 2 included here, which is stronger than the one from CLRS) is on pp. 268 ...
It is a generalization of the master theorem for divide-and-conquer recurrences, which assumes that the sub-problems have equal size. It is named after mathematicians Mohamad Akra and Louay Bazzi. It is named after mathematicians Mohamad Akra and Louay Bazzi.
MacMahon Master theorem (enumerative combinatorics) Maharam's theorem (measure theory) Mahler's compactness theorem (geometry of numbers) Mahler's theorem (p-adic analysis) Maier's theorem (analytic number theory) Malgrange preparation theorem (singularity theory) Malgrange–Ehrenpreis theorem (differential equations)
The master theorem for divide-and-conquer recurrences tells us that T(n) = O(n log n). The outline of a formal proof of the O ( n log n ) expected time complexity follows. Assume that there are no duplicates as duplicates could be handled with linear time pre- and post-processing, or considered cases easier than the analyzed.
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
The bracket integration method (method of brackets) applies Ramanujan's master theorem to a broad range of integrals. [7] The bracket integration method generates the integrand's series expansion , creates a bracket series, identifies the series coefficient and formula parameters and computes the integral.
In a computer with a full 32-bit by 32-bit multiplier, for example, one could choose B = 2 31 and store each digit as a separate 32-bit binary word. Then the sums x 1 + x 0 and y 1 + y 0 will not need an extra binary word for storing the carry-over digit (as in carry-save adder ), and the Karatsuba recursion can be applied until the numbers to ...
For example, the independent set and dominating set problems for planar graphs are NP-complete, but can be solved in subexponential time using the planar separator theorem. [13] "Each instance of an NP-complete problem is difficult." Often some instances, or even most instances, may be easy to solve within polynomial time.