Search results
Results from the WOW.Com Content Network
The two thioether linkages are typically made by cysteine residues of the protein. These linkages do not allow the heme C to easily dissociate from the holoprotein , cytochrome c , compared with the more easily dissociated heme B that may dissociate from the holoprotein, the heme-protein complex, even under mild conditions.
The cysteine sulfhydryl group is nucleophilic and easily oxidized. The reactivity is enhanced when the thiol is ionized, and cysteine residues in proteins have pK a values close to neutrality, so are often in their reactive thiolate form in the cell. [23] Because of its high reactivity, the sulfhydryl group of cysteine has numerous biological ...
Small soluble cytochrome c proteins with a molecular weight of 8-12 kDa and a single heme group belong to class I. [10] [11] It includes the low-spin soluble cytC of mitochondria and bacteria, with the heme-attachment site located towards the N-terminus, and the sixth ligand provided by a methionine residue about 40 residues further on towards the C-terminus.
The palmitoyl residues are transferred to the cysteine residues. If these resides are mutated membrane targeting is reduced or lost. [15] The rat CSP forms a complex with Sgt and Hsc70 located on the synaptic vesicle surface. This complex functions as an ATP-dependent chaperone that reactivates
Cytochrome c belongs to class I of the c-type cytochrome family [13] and contains a characteristic CXXCH (cysteine-any-any-cysteine-histidine) amino acid motif that binds heme. [14] This motif is located towards the N-terminus of the peptide chain and contains a histidine as the 5th ligand of the heme iron.
Cystine is the oxidized derivative of the amino acid cysteine and has the formula (SCH 2 CH(NH 2)CO 2 H) 2.It is a white solid that is poorly soluble in water. As a residue in proteins, cystine serves two functions: a site of redox reactions and a mechanical linkage that allows proteins to retain their three-dimensional structure.
Zinc and Cadmium are tetrahedrally coordinated to cysteine residues, and each metallothionein protein molecule may bind up to 7 atoms of Zn or Cd. [5] The biosynthesis of metallothionein appears to increase several-fold during periods of oxidative stress to shield the cells against cytotoxicity and DNA damage.
Oxidative protein folding is a process that is responsible for the formation of disulfide bonds between cysteine residues in proteins. The driving force behind this process is a redox reaction , in which electrons pass between several proteins and finally to a terminal electron acceptor .