Search results
Results from the WOW.Com Content Network
Different modes of two-phase flows. In fluid mechanics, two-phase flow is a flow of gas and liquid — a particular example of multiphase flow.Two-phase flow can occur in various forms, such as flows transitioning from pure liquid to vapor as a result of external heating, separated flows, and dispersed two-phase flows where one phase is present in the form of particles, droplets, or bubbles in ...
The dispersed phase is solved by tracking a large number of disperse particles, bubbles or droplets. The dispersed phase can exchange momentum, mass and energy with the fluid phase. [1] Euler-Euler two phase flow is characterised by the volume-averaged mass conservation equation for each phase. [4]
Transformation of three phase electrical quantities to two phase quantities is a usual practice to simplify analysis of three phase electrical circuits. Polyphase a.c machines can be represented by an equivalent two phase model provided the rotating polyphases winding in rotor and the stationary polyphase windings in stator can be expressed in a fictitious two axes coils.
Hysteresis does not change the shape of the governing flow equation, but it increases (usually doubles) the number of constitutive equations for properties involved in the hysteresis. During 1951-1970 commercial computers entered the scene of scientific and engineering calculations and model simulations.
In two-phase flows in which the properties of the two phases are vastly different, errors in the computation of the surface tension force at the interface cause Front-Capturing methods such as Volume of Fluid (VOF) and Level-Set method (LS) to develop interfacial spurious currents. To better solve such flows, special treatment is required to ...
The faults may be three-phase short circuit, one-phase grounded, two-phase short circuit, two-phase grounded, one-phase break, two-phase break or complex faults. Results of such an analysis may help determine the following: Magnitude of the fault current; Circuit breaker capacity; Rise in voltage in a single line due to ground fault
Two-phase power can be derived from a three-phase source using two transformers in a Scott connection: One transformer primary is connected across two phases of the supply. The second transformer is connected to a center-tap of the first transformer, and is wound for 86.6% of the phase-to-phase voltage on the three-phase system.
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.