Search results
Results from the WOW.Com Content Network
Adaptive simulated annealing algorithms address this problem by connecting the cooling schedule to the search progress. Other adaptive approaches such as Thermodynamic Simulated Annealing, [16] automatically adjusts the temperature at each step based on the energy difference between the two states, according to the laws of thermodynamics.
While it is sometimes possible to substitute gradient descent for a local search algorithm, gradient descent is not in the same family: although it is an iterative method for local optimization, it relies on an objective function’s gradient rather than an explicit exploration of a solution space.
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Adaptive simulated annealing (ASA) is a variant of simulated annealing (SA) algorithm in which the algorithm parameters that control temperature schedule and random step selection are automatically adjusted according to algorithm progress. This makes the algorithm more efficient and less sensitive to user defined parameters than canonical SA.
The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and reasonable starting parameters, the LMA tends to be slower than the GNA.
In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.
SPSA is a descent method capable of finding global minima, sharing this property with other methods such as simulated annealing. Its main feature is the gradient approximation that requires only two measurements of the objective function, regardless of the dimension of the optimization problem.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.