enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...

  3. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.

  5. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    When the pipes have certain roughness <, this factor must be taken in account when the Fanning friction factor is calculated. The relationship between pipe roughness and Fanning friction factor was developed by Haaland (1983) under flow conditions of 4 ⋅ 10 4 < R e < 10 7 {\displaystyle 4\centerdot 10^{4}<Re<10^{7}}

  6. Prony equation - Wikipedia

    en.wikipedia.org/wiki/Prony_equation

    where h f is the head loss due to friction, calculated from: the ratio of the length to diameter of the pipe L/D, the velocity of the flow V, and two empirical factors a and b to account for friction. This equation has been supplanted in modern hydraulics by the Darcy–Weisbach equation, which used it as a starting point.

  7. File:Equal-friction chart for air in metal duct (ε = 0.05mm ...

    en.wikipedia.org/wiki/File:Equal-friction_chart...

    English: A graphical depiction of the relationship between S = Δ p / L, the pressure loss per unit length of pipe, versus flow volume Q, for a range of choices for pipe diameter D, for air at standard temperature and pressure. Units are SI.

  8. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    By setting the coefficient k to K, the flow rate Q to I and the exponent n to 1, the Hardy Cross method can be used to solve a simple circuit. However, because the relation between the voltage drop and current is linear, the Hardy Cross method is not necessary and the circuit can be solved using non-iterative methods.

  9. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    Jean Le Rond d'Alembert, Nouvelles expériences sur la résistance des fluides, 1777. In fluid dynamics, friction loss (or frictional loss) is the head loss that occurs in a containment such as a pipe or duct due to the effect of the fluid's viscosity near the surface of the containment.