Search results
Results from the WOW.Com Content Network
Base-cation saturation ratio (BCSR) is a method of interpreting soil test results that is widely used in sustainable agriculture, supported by the National Sustainable Agriculture Information Service (ATTRA) [1] and claimed to be successfully in use on over a million acres (4,000 km 2) of farmland worldwide.
Cation-exchange capacity (CEC) is a measure of how many cations can be retained on soil particle surfaces. [1] Negative charges on the surfaces of soil particles bind positively-charged atoms or molecules (cations), but allow these to exchange with other positively charged particles in the surrounding soil water. [2]
General aviation pilots use dew point data to calculate the likelihood of carburetor icing and fog, and to estimate the height of a cumuliform cloud base. Increasing the barometric pressure raises the dew point. [11]
The saturation flow is the rate at which a continuous flow of vehicles can pass through a constant green signal, typically expressed in vehicles per hour or PCUs per hour. [1] A formula to calculate saturation flows based on lane geometry is given in Transport and Road Research Laboratory RR67. [2]
A typical titration curve of a diprotic acid, oxalic acid, titrated with a strong base, sodium hydroxide.Both equivalence points are visible. Titrations are often recorded on graphs called titration curves, which generally contain the volume of the titrant as the independent variable and the pH of the solution as the dependent variable (because it changes depending on the composition of the ...
log refers to the logarithm in base 10 e * is the saturation water vapor pressure T is the absolute air temperature in kelvins T st is the steam-point (i.e. boiling point at 1 atm.) temperature (373.15 K) e * st is e * at the steam-point pressure (1 atm = 1013.25 hPa) Similarly, the correlation for the saturation water vapor pressure over ice is:
where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]
The amount, type, and duration of precipitation all have an impact. Rainfall leads to faster infiltration rates than any other precipitation event, such as snow or sleet. In terms of amount, the more precipitation that occurs, the more infiltration will occur until the ground reaches saturation, at which point the infiltration capacity is reached.