Ad
related to: horizontal translation algebra
Search results
Results from the WOW.Com Content Network
Starting from the graph of f, a horizontal translation means composing f with a function , for some constant number a, resulting in a graph consisting of points (, ()) . Each point ( x , y ) {\displaystyle (x,y)} of the original graph corresponds to the point ( x + a , y ) {\displaystyle (x+a,y)} in the new graph ...
p2mm: TRHVG (translation, 180° rotation, horizontal line reflection, vertical line reflection, and glide reflection) Formally, a frieze group is a class of infinite discrete symmetry groups of patterns on a strip (infinitely wide rectangle), hence a class of groups of isometries of the plane, or of a strip.
Horizontal shear of a square into parallelograms with factors and =. In the plane =, a horizontal shear (or shear parallel to the x-axis) is a function that takes a generic point with coordinates (,) to the point (+,); where m is a fixed parameter, called the shear factor.
In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .
This one is invariant under horizontal and vertical translation, as well as rotation by 180° (but not under reflection). In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects.
Natural transformations arise frequently in conjunction with adjoint functors, and indeed, adjoint functors are defined by a certain natural isomorphism. Additionally, every pair of adjoint functors comes equipped with two natural transformations (generally not isomorphisms) called the unit and counit.
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.
Combining two equal glide plane operations gives a pure translation with a translation vector that is twice that of the glide reflection, so the even powers of the glide reflection form a translation group. In the case of glide-reflection symmetry, the symmetry group of an object contains a glide reflection and the group generated by it. For ...
Ad
related to: horizontal translation algebra