Search results
Results from the WOW.Com Content Network
The explanation made in the original paper [1] was that batch norm works by reducing internal covariate shift, but this has been challenged by more recent work. One experiment [2] trained a VGG-16 network [5] under 3 different training regimes: standard (no batch norm), batch norm, and batch norm with noise added to each layer during training ...
A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [ 2 ] [ 3 ] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set . [ 4 ]
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
The norm (see also Norms) can be used to approximate the optimal norm via convex relaxation. It can be shown that the L 1 {\displaystyle L_{1}} norm induces sparsity. In the case of least squares, this problem is known as LASSO in statistics and basis pursuit in signal processing.
where are the input samples and () is the kernel function (or Parzen window). is the only parameter in the algorithm and is called the bandwidth. This approach is known as kernel density estimation or the Parzen window technique. Once we have computed () from the equation above, we can find its local maxima using gradient ascent or some other optimization technique. The problem with this ...
In general, instead of e a different base b > 0 can be used. As above, if b > 1 then larger input components will result in larger output probabilities, and increasing the value of b will create probability distributions that are more concentrated around the positions of the largest input values.
Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [2]
Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.