enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    There exist continuous functions whose Fourier series converges pointwise but not uniformly. [8] However, the Fourier series of a continuous function need not converge pointwise. Perhaps the easiest proof uses the non-boundedness of Dirichlet's kernel in L 1 (T) and the Banach–Steinhaus uniform boundedness principle.

  3. Dini test - Wikipedia

    en.wikipedia.org/wiki/Dini_test

    Then the Fourier series of f converges at t to f(t). For example, the theorem holds with ω f = log −2 ( ⁠ 1 / δ ⁠ ) but does not hold with log −1 ( ⁠ 1 / δ ⁠ ) . Theorem (the Dini–Lipschitz test): Assume a function f satisfies

  4. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  5. Carleson's theorem - Wikipedia

    en.wikipedia.org/wiki/Carleson's_theorem

    This was disproved by Paul du Bois-Reymond, who showed in 1876 that there is a continuous function whose Fourier series diverges at one point. The almost-everywhere convergence of Fourier series for L 2 functions was postulated by N. N. Luzin , and the problem was known as Luzin's conjecture (up until its proof by Carleson (1966)).

  6. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  7. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The theorems proving that a Fourier series is a valid representation of any periodic function (that satisfies the Dirichlet conditions), and informal variations of them that don't specify the convergence conditions, are sometimes referred to generically as Fourier's theorem or the Fourier theorem.

  8. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    A version holds for Fourier series as well: if is an integrable function on a bounded interval, then the Fourier coefficients ^ of tend to 0 as . This follows by extending f {\displaystyle f} by zero outside the interval, and then applying the version of the Riemann–Lebesgue lemma on the entire real line.

  9. Wiener–Lévy theorem - Wikipedia

    en.wikipedia.org/wiki/Wiener–Lévy_theorem

    Wiener–Lévy theorem is a theorem in Fourier analysis, which states that a function of an absolutely convergent Fourier series has an absolutely convergent Fourier series under some conditions. The theorem was named after Norbert Wiener and Paul Lévy. Norbert Wiener first proved Wiener's 1/f theorem, [1] see Wiener's theorem. It states that ...