enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    However Carleson's theorem shows that for a given continuous function the Fourier series converges almost everywhere. It is also possible to give explicit examples of a continuous function whose Fourier series diverges at 0: for instance, the even and 2π-periodic function f defined for all x in [0,π] by [ 9 ]

  3. Dini test - Wikipedia

    en.wikipedia.org/wiki/Dini_test

    Then the Fourier series of f converges at t to f(t). For example, the theorem holds with ω f = log −2 ( ⁠ 1 / δ ⁠ ) but does not hold with log −1 ( ⁠ 1 / δ ⁠ ) . Theorem (the Dini–Lipschitz test): Assume a function f satisfies

  4. Parseval's identity - Wikipedia

    en.wikipedia.org/wiki/Parseval's_identity

    In mathematical analysis, Parseval's identity, named after Marc-Antoine Parseval, is a fundamental result on the summability of the Fourier series of a function. The identity asserts the equality of the energy of a periodic signal (given as the integral of the squared amplitude of the signal) and the energy of its frequency domain representation (given as the sum of squares of the amplitudes).

  5. Carleson's theorem - Wikipedia

    en.wikipedia.org/wiki/Carleson's_theorem

    When combined with Carleson's theorem this shows that there is a continuous function whose Fourier series diverges at all points of a given set of reals if and only if the set has measure 0. The extension of Carleson's theorem to L p for p > 1 was stated to be a "rather obvious" extension of the case p = 2 in Carleson's paper, and was proved by ...

  6. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The theorems proving that a Fourier series is a valid representation of any periodic function (that satisfies the Dirichlet conditions), and informal variations of them that don't specify the convergence conditions, are sometimes referred to generically as Fourier's theorem or the Fourier theorem.

  7. Dirichlet–Jordan test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet–Jordan_test

    In mathematics, the Dirichlet–Jordan test gives sufficient conditions for a complex-valued, periodic function to be equal to the sum of its Fourier series at a point of continuity. Moreover, the behavior of the Fourier series at points of discontinuity is determined as well (it is the midpoint of the values of the discontinuity).

  8. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  9. Wiener–Lévy theorem - Wikipedia

    en.wikipedia.org/wiki/Wiener–Lévy_theorem

    Wiener–Lévy theorem is a theorem in Fourier analysis, which states that a function of an absolutely convergent Fourier series has an absolutely convergent Fourier series under some conditions. The theorem was named after Norbert Wiener and Paul Lévy. Norbert Wiener first proved Wiener's 1/f theorem, [1] see Wiener's theorem. It states that ...