Search results
Results from the WOW.Com Content Network
Two clusters of faces of the bilunabirotunda, the lunes (each lune featuring two triangles adjacent to opposite sides of one square), can be aligned with a congruent patch of faces on the rhombicosidodecahedron. If two bilunabirotundae are aligned this way on opposite sides of the rhombicosidodecahedron, then a cube can be put between the ...
To show this, Gergonne considered lines through corresponding points of tangency on two of the given circles, e.g., the line defined by A 1 /A 2 and the line defined by B 1 /B 2. Let X 3 be a center of similitude for the two circles C 1 and C 2 ; then, A 1 / A 2 and B 1 / B 2 are pairs of antihomologous points , and their lines intersect at X 3 .
A Sudoku with 24 clues, dihedral symmetry (a 90° rotational symmetry, which also includes a symmetry on both orthogonal axis, 180° rotational symmetry, and diagonal symmetry) is known to exist, but it is not known if this number of clues is minimal for this class of Sudoku.
In the rare case that these other methods all fail, Fibonacci suggests a "greedy" algorithm for computing Egyptian fractions, in which one repeatedly chooses the unit fraction with the smallest denominator that is no larger than the remaining fraction to be expanded: that is, in more modern notation, we replace a fraction x / y by the ...
Frobenius coin problem with 2-pence and 5-pence coins visualised as graphs: Sloping lines denote graphs of 2x+5y=n where n is the total in pence, and x and y are the non-negative number of 2p and 5p coins, respectively. A point on a line gives a combination of 2p and 5p for its given total (green).
no symmetry; 2-fold rotational symmetry: C 2; 4-fold rotational symmetry: C 4; 1 one-sided polyomino for each free polyomino: all symmetry of the square: D 4; mirror symmetry with respect to one of the grid line directions; mirror symmetry with respect to a diagonal line; symmetry with respect to both grid line directions, and hence also 2-fold ...
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
The boundaries of this cell are given by planes related to points on the reciprocal lattice. The importance of the Brillouin zone stems from the description of waves in a periodic medium given by Bloch's theorem, in which it is found that the solutions can be completely characterized by their behavior in a single Brillouin zone.