Search results
Results from the WOW.Com Content Network
In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [ 1 ] [ 2 ] Heronian triangles are named after Heron of Alexandria , based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84 .
A Heronian triangle, also known as a Heron triangle or a Hero triangle, is a triangle with integer sides and integer area. All Heronian triangles can be placed on a lattice with each vertex at a lattice point. [7] Furthermore, if an integer triangle can be place on a lattice with each vertex at a lattice point it must be Heronian.
In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.
[1] [2] [3] The triangle whose side lengths are 3, 4, 5 is a Brahmagupta triangle and so also is the triangle whose side lengths are 13, 14, 15. The Brahmagupta triangle is a special case of the Heronian triangle which is a triangle whose side lengths and area are all positive integers but the side lengths need not necessarily be consecutive ...
Triangle – 3 sides Acute triangle; Equilateral triangle; Heptagonal triangle; Isosceles triangle. Golden Triangle; Obtuse triangle; Rational triangle; Heronian triangle. Pythagorean triangle; Isosceles heronian triangle; Primitive Heronian triangle; Right triangle. 30-60-90 triangle; Isosceles right triangle; Kepler triangle; Scalene triangle ...
Every Heronian triangle, or for that matter finite set of such, has integer sides and area for some choice of scale. The least situation I can imagine where one would want the more general notion is when dealing with infinite sets of Heronian triangles, which may not have a common denominator.
A Heronian tetrahedron [1] (also called a Heron tetrahedron [2] or perfect pyramid [3]) is a tetrahedron whose edge lengths, face areas and volume are all integers. The faces must therefore all be Heronian triangles (named for Hero of Alexandria). Every Heronian tetrahedron can be arranged in Euclidean space so that its vertex coordinates are ...
Heronian triangle; Hyperbolic triangle ... Reuleaux triangle; Right triangle; S. Scalene triangle; SierpiĆski triangle; Skinny triangle ... Wikipedia® is a ...