Ad
related to: maximum number of divisors a 15 12 20 sermon topicssermonsearch.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. ... 10, 12, 15, 20 ...
the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.
Since the sum of its divisors (excluding the number itself) 2040 > 840; It is an abundant number and also a superabundant number. [2] It is an idoneal number. [3] It is the least common multiple of the numbers from 1 to 8. [4] It is the smallest number divisible by every natural number from 1 to 10, except 9.
In abstract algebra, the concept of a maximal common divisor is needed to generalize greatest common divisors to number systems in which the common divisors of a set of elements may have more than one maximal element. In computational geometry, the maxima of a point set are maximal with respect to the partial order of coordinatewise domination.
In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. The integer 12 is the first abundant number.
In number theory, a semiperfect number or pseudoperfect number is a natural number n that is equal to the sum of all or some of its proper divisors. A semiperfect number that is equal to the sum of all its proper divisors is a perfect number. The first few semiperfect numbers are: 6, 12, 18, 20, 24, 28, 30, 36, 40, ... (sequence A005835 in the ...
Ad
related to: maximum number of divisors a 15 12 20 sermon topicssermonsearch.com has been visited by 10K+ users in the past month