Search results
Results from the WOW.Com Content Network
Auxins (plural of auxin / ˈ ɔː k s ɪ n /) are a class of plant hormones (or plant-growth regulators) with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development.
Auxin, a plant hormone that allows for cell elongation, is accumulated during the initial growing and developmental phases of the plants life cycle. During ethylene gene induction it was found that auxin related genes (aux/IAA and AUX1) represents the transcription factors that induce 1-MCP.
Indole-3-acetic acid (IAA, 3-IAA) is the most common naturally occurring plant hormone of the auxin class. It is the best known of the auxins, and has been the subject of extensive studies by plant physiologists. [1] IAA is a derivative of indole, containing a carboxymethyl substituent. It is a colorless solid that is soluble in polar organic ...
Plant physiologists have identified four different stages the plant goes through after the apex is removed (Stages I-IV). The four stages are referred to as lateral bud formation, "imposition of inhibition" (apical dominance), initiation of lateral bud outgrowth following decapitation, and; elongation and development of the lateral bud into a ...
Cytokinins and auxins often work together, and the ratios of these two groups of plant hormones affect most major growth periods during a plant's lifetime. Cytokinins counter the apical dominance induced by auxins; in conjunction with ethylene, they promote abscission of leaves, flower parts, and fruits.
When the apical bud is removed, the axillary buds are uninhibited, lateral growth increases, and plants become bushier. Applying auxin to the cut stem again inhibits lateral dominance. [2] Moreover, it has been shown that cytokinin alone has no effect on parenchyma cells. When cultured with auxin but no cytokinin, they grow large but do not divide.
Polar auxin transport (PAT) is directional and active flow of auxin molecules through the plant tissues. The flow of auxin molecules through the neighboring cells is driven by carriers (type of membrane transport protein) in the cell-to-cell fashion (from one cell to other cell and then to the next one) and the direction of the flow is determined by the localization of the carriers on the ...
This has also been observed in tobacco plants. [38] Auxin increases GA 3-oxidation and decreases GA 2-oxidation in barley. [39] Auxin also regulates GA biosynthesis during fruit development in peas. [40] These discoveries in different plant species suggest the auxin regulation of GA metabolism may be a universal mechanism.