Search results
Results from the WOW.Com Content Network
Auxins (plural of auxin / ˈ ɔː k s ɪ n /) are a class of plant hormones (or plant-growth regulators) with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development.
Plant physiologists have identified four different stages the plant goes through after the apex is removed (Stages I-IV). The four stages are referred to as lateral bud formation, "imposition of inhibition" (apical dominance), initiation of lateral bud outgrowth following decapitation, and; elongation and development of the lateral bud into a ...
Auxin, a plant hormone that allows for cell elongation, is accumulated during the initial growing and developmental phases of the plants life cycle. During ethylene gene induction it was found that auxin related genes (aux/IAA and AUX1) represents the transcription factors that induce 1-MCP.
Cytokinins and auxins often work together, and the ratios of these two groups of plant hormones affect most major growth periods during a plant's lifetime. Cytokinins counter the apical dominance induced by auxins; in conjunction with ethylene, they promote abscission of leaves, flower parts, and fruits.
The mechanism of apical dominance is based on auxins, types of plant growth regulators. These are produced in the apical meristem and transported towards the roots in the cambium . If apical dominance is complete, they prevent any branches from forming as long as the apical meristem is active.
Polar auxin transport (PAT) is directional and active flow of auxin molecules through the plant tissues. The flow of auxin molecules through the neighboring cells is driven by carriers (type of membrane transport protein) in the cell-to-cell fashion (from one cell to other cell and then to the next one) and the direction of the flow is determined by the localization of the carriers on the ...
Ethylene and auxin complement JA by influencing cell elongation and asymmetric growth, both critical for thigmomorphogenesis. Ethylene production increases in mechanically stimulated plants and is linked to radial expansion and stem thickening, traits that enhance structural stability against mechanical forces like wind.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more