Search results
Results from the WOW.Com Content Network
[2] Whether a space supports a Poincaré inequality has turned out to have deep connections to the geometry and analysis of the space. For example, Cheeger has shown that a doubling space satisfying a Poincaré inequality admits a notion of differentiation. [3] Such spaces include sub-Riemannian manifolds and Laakso spaces.
The Atkinson index is defined as: (, …,) = {(=) / (=) / = (,...,) = +where is individual income (i = 1, 2, ..., N) and is the mean income.. In other words, the Atkinson index is the complement to 1 of the ratio of the Hölder generalized mean of exponent 1−ε to the arithmetic mean of the incomes (where as usual the generalized mean of exponent 0 is interpreted as the geometric mean).
The following theorem presents a strengthened version of the Bernoulli inequality, incorporating additional terms to refine the estimate under specific conditions. Let the expoent r {\displaystyle r} be a nonnegative integer and let x {\displaystyle x} be a real number with x ≥ − 2 {\displaystyle x\geq -2} if r {\displaystyle r} is odd and ...
Microsoft Excel is a spreadsheet editor developed by Microsoft for Windows, macOS, Android, iOS and iPadOS.It features calculation or computation capabilities, graphing tools, pivot tables, and a macro programming language called Visual Basic for Applications (VBA).
An inequality is said to be sharp if it cannot be relaxed and still be valid in general. Formally, a universally quantified inequality φ is called sharp if, for every valid universally quantified inequality ψ, if ψ ⇒ φ holds, then ψ ⇔ φ also holds. For instance, the inequality ∀a ∈ R. a 2 ≥ 0 is sharp, whereas the inequality ∀ ...
An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
If α is the zero function and u is non-negative, then Grönwall's inequality implies that u is the zero function. The integrability of u with respect to μ is essential for the result. For a counterexample, let μ denote Lebesgue measure on the unit interval [0, 1], define u(0) = 0 and u(t) = 1/t for t ∈ (0, 1], and let α be the zero function.