Search results
Results from the WOW.Com Content Network
8.0% (1 in 12.5) – Just outside the Tombstone Jct. Station in the Tombstone Junction Theme Park, Kentucky, US. The railroad line there had a ruling grade of 6% (1 in 16.7). 7.85% (1 in 12.7) – Near Washington Street station on the Green Line B branch , Boston , Massachusetts , US.
Every helpful hint and clue for Sunday's Strands game from the New York Times.
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The slope field can be defined for the following type of differential equations ′ = (,), which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution (integral curve) at each point (x, y) as a function of the point coordinates.
A slope which falls down to a deep valley on its western side and a shallower one on its eastern side has a westerly aspect or is a west-facing slope. The direction a slope faces can affect the physical and biotic features of the slope, known as a slope effect .
Slope stability refers to the condition of inclined soil or rock slopes to withstand or undergo movement; the opposite condition is called slope instability or slope failure. The stability condition of slopes is a subject of study and research in soil mechanics , geotechnical engineering , and engineering geology .
The standard mild slope equation, without extra terms for bed slope and bed curvature, provides accurate results for the wave field over bed slopes ranging from 0 to about 1/3. [11] However, some subtle aspects, like the amplitude of reflected waves, can be completely wrong, even for slopes going to zero.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).