Search results
Results from the WOW.Com Content Network
In programming language theory, lazy evaluation, or call-by-need, [1] is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which avoids repeated evaluations (by the use of sharing). [2] [3] The benefits of lazy evaluation include:
Off-by-one errors are common in using the C library because it is not consistent with respect to whether one needs to subtract 1 byte – functions like fgets() and strncpy will never write past the length given them (fgets() subtracts 1 itself, and only retrieves (length − 1) bytes), whereas others, like strncat will write past the length given them.
(b) if one circuit fails and produces an output of 0, while the other two are working correctly and produce an output of 1, the majority gate output is 1, i.e., it still has the correct value. And similarly for the case when the Boolean function computed by the three identical circuits has value 0.
The overall accuracy would be 95%, but in more detail the classifier would have a 100% recognition rate (sensitivity) for the cancer class but a 0% recognition rate for the non-cancer class. F1 score is even more unreliable in such cases, and here would yield over 97.4%, whereas informedness removes such bias and yields 0 as the probability of ...
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Some quadrature algorithms generate a sequence of results which should approach the correct value. Otherwise one can use a "null rule" which has the form of the above quadrature rule, but whose value would be zero for a simple integrand (for example, if the integrand were a polynomial of the appropriate degree).
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]