enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  3. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as follows:

  4. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably , rather than countably , infinite. [ 1 ]

  5. Skolem's paradox - Wikipedia

    en.wikipedia.org/wiki/Skolem's_paradox

    One of the earliest results in set theory, published by Cantor in 1874, was the existence of different sizes, or cardinalities, of infinite sets. [2] An infinite set is called countable if there is a function that gives a one-to-one correspondence between and the natural numbers, and is uncountable if there is no such correspondence function.

  6. Null set - Wikipedia

    en.wikipedia.org/wiki/Null_set

    The Cantor set is an example of an uncountable null set. It is uncountable because it contains all real numbers between 0 and 1 whose ternary form decimal expansion can be written using only 0’s and 2’s, and it is null because it is constructed by beginning with the closed interval of real numbers from 0 to 1 and multiplying the length by 2 ...

  7. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  8. Strong measure zero set - Wikipedia

    en.wikipedia.org/wiki/Strong_measure_zero_set

    A set A ⊆ R has strong measure zero if and only if A + M ≠ R for every meagre set M ⊆ R. [5] This result establishes a connection to the notion of strongly meagre set, defined as follows: A set M ⊆ R is strongly meagre if and only if A + M ≠ R for every set A ⊆ R of Lebesgue measure zero.

  9. Category:Infinity - Wikipedia

    en.wikipedia.org/wiki/Category:Infinity

    Uncountable set; W. John Wallis; Weak continuum hypothesis; Where Mathematics Comes From This page was last edited on 5 August 2023, at 23:29 (UTC). Text is ...