Search results
Results from the WOW.Com Content Network
In the process of plant roots growing in the direction of gravity by gravitropism, high concentrations of auxin move towards the cells on the bottom side of the root. This suppresses growth on this side, while allowing cell elongation on the top of the root. As a consequence of this, curved growth occurs and the root is directed downwards. [3]
Gravity has had an effect on the development of animal life since the first single-celled organism. The size of single biological cells is inversely proportional to the strength of the gravitational field exerted on the cell. That is, in stronger gravitational fields the size of cells decreases, and in weaker gravitational fields the size of ...
Prokaryotes are able to subsist by allowing materials to enter the cell via simple diffusion. Intracellular transport is more specialized than diffusion; it is a multifaceted process which utilizes transport vesicles. Transport vesicles are small structures within the cell consisting of a fluid enclosed by a lipid bilayer that hold cargo. These ...
Root tip: 1. meristem 2. columella (statocytes with statoliths at the bottom of the cell) 3. side of the root cap 4. dead cells 5. cell elongation zone. Optical microscope 100x Statocyte: 1.cell wall 2.endoplasmic reticulum 3.plasmodesma 4.cell nucleus 5.mitochondrion 6.cytoplasm 7.statolith 8.root 9.columella 10.statocyte
Polar auxin transport (PAT) is directional and active flow of auxin molecules through the plant tissues. The flow of auxin molecules through the neighboring cells is driven by carriers (type of membrane transport protein) in the cell-to-cell fashion (from one cell to other cell and then to the next one) and the direction of the flow is determined by the localization of the carriers on the ...
Cell migration is a central process in the development and maintenance of multicellular organisms.Tissue formation during embryonic development, wound healing and immune responses all require the orchestrated movement of cells in particular directions to specific locations.
In contrast, paracellular transport is the transfer of substances across an epithelium by passing through an intercellular space between the cells. It differs from transcellular transport, where the substances travel through the cell passing through both the apical membrane and basolateral membrane; Renal physiology. Transcellular transport is ...
The cooling is wind driven: wind moving over water cools the water and also causes evaporation, leaving a saltier brine. In this process, the water becomes saltier and denser and decreases in temperature. Once sea ice forms, salts are left out of the ice, a process known as brine exclusion. [31]