Search results
Results from the WOW.Com Content Network
Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay ) with energies often distinct to the decay they ...
A present day null constraint on the time variation of alpha does not necessarily rule out time variation in the past. Indeed, some theories [ 56 ] that predict a variable fine-structure constant also predict that the value of the fine-structure constant should become practically fixed in its value once the universe enters its current dark ...
Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level.
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .
Subsequent study of the spectra of this light showed that the gas was helium and thus the alpha particles were indeed the helium ions. [9]: 61 In 1911, Rutherford used alpha particle scattering data to argue that the positive charge of an atom is concentrated in a tiny nucleus.
H-alpha is the red line at the right. The Balmer series includes the lines due to transitions from an outer orbit n > 2 to the orbit n' = 2. Named after Johann Balmer , who discovered the Balmer formula , an empirical equation to predict the Balmer series, in 1885.
This choice also places K-alpha firmly in the X-ray energy range. Similarly to Lyman-alpha, the K-alpha emission is composed of two spectral lines, K-alpha 1 (Kα 1) and K-alpha 2 (Kα 2). [6] The K-alpha 1 emission is slightly higher in energy (and, thus, has a lower wavelength) than the K-alpha 2 emission.
The Lyman-alpha forest was first discovered in 1970 by astronomer Roger Lynds in an observation of the quasar 4C 05.34. [1] Quasar 4C 05.34 was the farthest object observed to that date, and Lynds noted an unusually large number of absorption lines in its spectrum and suggested that most of the absorption lines were all due to the same Lyman-alpha transition. [2]