Search results
Results from the WOW.Com Content Network
AC-3 then terminates, with D(X) = {0, 2, 4} and D(Y) = {0, 2, 4}. AC-3 is expressed in pseudocode as follows: Input: A set of variables X A set of domains D(x) for each variable x in X. D(x) contains vx0, vx1... vxn, the possible values of x A set of unary constraints R1(x) on variable x that must be satisfied A set of binary constraints R2(x ...
These are often provided with tutorials of CP, ASP, Boolean SAT and SMT solvers. In the general case, constraint problems can be much harder, and may not be expressible in some of these simpler systems. "Real life" examples include automated planning, [6] [7] lexical disambiguation, [8] [9] musicology, [10] product configuration [11] and ...
Unary coding, [nb 1] or the unary numeral system and also sometimes called thermometer code, is an entropy encoding that represents a natural number, n, with a code of length n + 1 ( or n), usually n ones followed by a zero (if natural number is understood as non-negative integer) or with n − 1 ones followed by a zero (if natural number is understood as strictly positive integer).
As an example, the clause A(X):-X>0,B(X) is a clause containing the constraint X>0 in the body. Constraints can also be present in the goal. The constraints in the goal and in the clauses used to prove the goal are accumulated into a set called constraint store. This set contains the constraints the interpreter has assumed satisfiable in order ...
Domain-specific constraints may come to the constraint store both from the body of a clauses and from equating a literal with a clause head: for example, if the interpreter rewrites the literal A(X+2) with a clause whose fresh variant head is A(Y/2), the constraint X+2=Y/2 is added to the constraint store. If a variable appears in a real or ...
The AC-3 algorithm improves over this algorithm by ignoring constraints that have not been modified since they were last analyzed. In particular, it works on a set of constraints that initially contains all constraints; at each step, it takes a constraint and enforces arc consistency; if this operation may have produced a violation of arc ...
In constraint programming, users declaratively state the constraints on the feasible solutions for a set of decision variables. Constraints differ from the common primitives of imperative programming languages in that they do not specify a step or sequence of steps to execute, but rather the properties of a solution to be found. In addition to ...
It is based on iteratively improving an assignment of the variables until all constraints are satisfied. In particular, local search algorithms typically modify the value of a variable in an assignment at each step. The new assignment is close to the previous one in the space of assignment, hence the name local search.