enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Propensity score matching - Wikipedia

    en.wikipedia.org/wiki/Propensity_score_matching

    Propensity scores are used to reduce confounding by equating groups based on these covariates. Suppose that we have a binary treatment indicator Z, a response variable r, and background observed covariates X. The propensity score is defined as the conditional probability of treatment given background variables:

  3. Concept drift - Wikipedia

    en.wikipedia.org/wiki/Concept_drift

    Concept drift generally occurs when the covariates that comprise the data set begin to explain the variation of your target set less accurately — there may be some confounding variables that have emerged, and that one simply cannot account for, which renders the model accuracy to progressively decrease with time. Generally, it is advised to ...

  4. Confounding - Wikipedia

    en.wikipedia.org/wiki/Confounding

    The confounding variable makes the results of the analysis unreliable. It is quite likely that we are just measuring the fact that highway driving results in better fuel economy than city driving. In statistics terms, the make of the truck is the independent variable, the fuel economy (MPG) is the dependent variable and the amount of city ...

  5. Controlling for a variable - Wikipedia

    en.wikipedia.org/wiki/Controlling_for_a_variable

    The regression uses as independent variables not only the one or ones whose effects on the dependent variable are being studied, but also any potential confounding variables, thus avoiding omitted variable bias. "Confounding variables" in this context means other factors that not only influence the dependent variable (the outcome) but also ...

  6. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    In the examples listed above, a nuisance variable is a variable that is not the primary focus of the study but can affect the outcomes of the experiment. [3] They are considered potential sources of variability that, if not controlled or accounted for, may confound the interpretation between the independent and dependent variables .

  7. Spurious relationship - Wikipedia

    en.wikipedia.org/wiki/Spurious_relationship

    Graphical model: Whereas a mediator is a factor in the causal chain (top), a confounder is a spurious factor incorrectly implying causation (bottom). In statistics, a spurious relationship or spurious correlation [1] [2] is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third ...

  8. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  9. Paired difference test - Wikipedia

    en.wikipedia.org/wiki/Paired_difference_test

    These artificial pairs are constructed based on additional variables that are thought to serve as confounders. By pairing students whose values on the confounding variables are similar, a greater fraction of the difference in the value of interest (e.g. the standardized test score in the example discussed above), is due to the factor of ...