Search results
Results from the WOW.Com Content Network
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
Note: If a third layer (not shown) is directly over the first layer, then the HCP lattice is built. If the third layer is placed over holes in the first layer, then the FCC lattice is created. To form an A-B-A-B-... hexagonal close packing of spheres, the coordinate points of the lattice will be the spheres' centers.
Beyond the until cell, the extended crystal structure of fluorite continues packing in a face-centered cubic (fcc) packing structure (also known as cubic close-packed or ccp). [5] This pattern of spherical packing follows an ABC pattern, where each successive layer of spheres settles on top of the adjacent hole of the lattice.
Note: the term fcc is often used in synonym for the cubic close-packed or ccp structure occurring in metals. However, fcc stands for a face-centered cubic Bravais lattice, which is not necessarily close-packed when a motif is set onto the lattice points. E.g. the diamond and the zincblende lattices are fcc but not close-packed. Each is ...
This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...
The angles that Bragg's law predicts are still approximately right, but in general there is a lattice of spots which are close to projections of the reciprocal lattice that is at right angles to the direction of the electron beam. (In contrast, Bragg's law predicts that only one or perhaps two would be present, not simultaneously tens to hundreds.)
Vegard's law assumes that both components A and B in their pure form (i.e., before mixing) have the same crystal structure. Here, a A (1-x) B x is the lattice parameter of the solid solution, a A and a B are the lattice parameters of the pure constituents, and x is the molar fraction of B in the solid solution.
The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice. In mathematics and solid state physics, the first Brillouin zone (named after Léon Brillouin) is a uniquely defined primitive cell in reciprocal space.