enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages

  3. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  4. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    The standard deviation is the square root of the variance. When individual determinations of an age are not of equal significance, it is better to use a weighted mean to obtain an "average" age, as follows: x ¯ ∗ = ∑ i = 1 N w i x i ∑ i = 1 N w i . {\displaystyle {\overline {x}}^{*}={\frac {\sum _{i=1}^{N}w_{i}x_{i}}{\sum _{i=1}^{N}w_{i}}}.}

  5. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  6. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The statistical errors, on the other hand, are independent, and their sum within the random sample is almost surely not zero. One can standardize statistical errors (especially of a normal distribution) in a z-score (or "standard score"), and standardize residuals in a t-statistic, or more generally studentized residuals.

  7. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    In some disciplines, the RMSD is used to compare differences between two things that may vary, neither of which is accepted as the "standard". For example, when measuring the average difference between two time series x 1 , t {\displaystyle x_{1,t}} and x 2 , t {\displaystyle x_{2,t}} , the formula becomes

  8. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...

  9. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).