enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrophobic effect - Wikipedia

    en.wikipedia.org/wiki/Hydrophobic_effect

    The hydrophobic effect is the observed tendency of nonpolar substances to aggregate in an aqueous solution and to be excluded by water. [ 1 ] [ 2 ] The word hydrophobic literally means "water-fearing", and it describes the segregation of water and nonpolar substances, which maximizes the entropy of water and minimizes the area of contact ...

  3. Thermodynamics of micellization - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics_of_micelliz...

    The driving mechanism for micellization is the transfer of hydrocarbon chains from water into the oil-like interior. This entropic effect is called the hydrophobic effect. Compared to the increase of entropy of the surrounding water molecules, this hydrophobic interaction is relatively small. The water molecules are highly ordered around the ...

  4. Entropic force - Wikipedia

    en.wikipedia.org/wiki/Entropic_force

    Another related and counter-intuitive example of entropic force is protein folding, which is a spontaneous process and where hydrophobic effect also plays a role. [11] Structures of water-soluble proteins typically have a core in which hydrophobic side chains are buried from water, which stabilizes the folded state. [ 12 ]

  5. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  6. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]

  7. Hydrophobicity scales - Wikipedia

    en.wikipedia.org/wiki/Hydrophobicity_scales

    Polar chemical groups, such as OH group in methanol do not cause the hydrophobic effect. However, a pure hydrocarbon molecule, for example hexane , cannot accept or donate hydrogen bonds to water. Introduction of hexane into water causes disruption of the hydrogen bonding network between water molecules.

  8. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.

  9. Chaotropic agent - Wikipedia

    en.wikipedia.org/wiki/Chaotropic_agent

    A chaotropic agent is a substance which disrupts the structure of, and denatures, macromolecules such as proteins and nucleic acids (e.g. DNA and RNA).Chaotropic solutes increase the entropy of the system by interfering with intermolecular interactions mediated by non-covalent forces such as hydrogen bonds, van der Waals forces, and hydrophobic effects.