Search results
Results from the WOW.Com Content Network
Statistical risk is a quantification of a situation's risk using statistical methods.These methods can be used to estimate a probability distribution for the outcome of a specific variable, or at least one or more key parameters of that distribution, and from that estimated distribution a risk function can be used to obtain a single non-negative number representing a particular conception of ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
A risk–benefit ratio (or benefit-risk ratio) is the ratio of the risk of an action to its potential benefits. Risk–benefit analysis (or benefit-risk analysis) is analysis that seeks to quantify the risk and benefits and hence their ratio. Analyzing a risk can be heavily dependent on the human factor.
Risk is the lack of certainty about the outcome of making a particular choice. Statistically, the level of downside risk can be calculated as the product of the probability that harm occurs (e.g., that an accident happens) multiplied by the severity of that harm (i.e., the average amount of harm or more conservatively the maximum credible amount of harm).
Financial risk modeling is the use of formal mathematical and econometric techniques to measure, monitor and control the market risk, credit risk, and operational risk on a firm's balance sheet, on a bank's accounting ledger of tradeable financial assets, or of a fund manager's portfolio value; see Financial risk management. Risk modeling is ...
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.
A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents portfolio returns. The common notation for a risk measure associated with a random variable X {\displaystyle X} is ρ ( X ) {\displaystyle \rho (X)} .
The Merton model, [1] developed by Robert C. Merton in 1974, is a widely used "structural" credit risk model. Analysts and investors utilize the Merton model to understand how capable a company is at meeting financial obligations, servicing its debt, and weighing the general possibility that it will go into credit default.