enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nilpotent matrix - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_matrix

    For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix []. That is, if is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b 1, b 2 such that Nb 1 = 0 and Nb 2 = b 1. This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)

  3. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan block corresponding to λ is of the form λI + N, where N is a nilpotent matrix defined as N ij = δ i,j−1 (where δ is the Kronecker delta). The nilpotency of N can be exploited when calculating f(A) where f is a complex analytic function. For example, in principle the Jordan form could give a closed-form expression for the ...

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Laplacian matrix — a matrix equal to the degree matrix minus the adjacency matrix for a graph, used to find the number of spanning trees in the graph. Seidel adjacency matrix — a matrix similar to the usual adjacency matrix but with −1 for adjacency; +1 for nonadjacency; 0 on the diagonal. Skew-adjacency matrix — an adjacency matrix in ...

  5. Nilpotent - Wikipedia

    en.wikipedia.org/wiki/Nilpotent

    Thus, a linear map is nilpotent iff it has a nilpotent matrix in some basis. Another example for this is the exterior derivative (again with n = 2 {\displaystyle n=2} ). Both are linked, also through supersymmetry and Morse theory , [ 6 ] as shown by Edward Witten in a celebrated article.

  6. Nilpotent orbit - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_orbit

    Nilpotent matrices with complex entries form the main motivating case for the general theory, corresponding to the complex general linear group.From the Jordan normal form of matrices we know that each nilpotent matrix is conjugate to a unique matrix with Jordan blocks of sizes …, where is a partition of n.

  7. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    There is also a real Schur decomposition. If A is an n × n square matrix with real entries, then A can be expressed as [4] = where Q is an orthogonal matrix and H is either upper or lower quasi-triangular. A quasi-triangular matrix is a matrix that when expressed as a block matrix of 2 × 2 and 1 × 1 blocks is

  8. Nilpotent operator - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_operator

    The operator T is not nilpotent: take f to be the function that is 1 everywhere and direct calculation shows that T n f ≠ 0 (in the sense of L 2) for all n. However, T is quasinilpotent. First notice that K is in L 2 (X, m), therefore T is compact. By the spectral properties of compact operators, any nonzero λ in σ(T) is an eigenvalue.

  9. Drazin inverse - Wikipedia

    en.wikipedia.org/wiki/Drazin_inverse

    The Drazin inverse of a matrix of index 0 or 1 is called the group inverse or {1,2,5}-inverse and denoted A #. The group inverse can be defined, equivalently, by the properties AA # A = A, A # AA # = A #, and AA # = A # A. A projection matrix P, defined as a matrix such that P 2 = P, has index 1 (or 0) and has Drazin inverse P D = P.