Search results
Results from the WOW.Com Content Network
[84]: 33 Newton's first law, inertial motion, remains true. A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the conservation of momentum. However, the definition of momentum is modified.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
It is change in motion that requires a cause, and Newton's second law gives the quantitative relationship between force and change of motion. Newton's second law states that the net force acting upon an object is equal to the rate at which its momentum changes with time.
So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle. Once independent relations for each force acting on a particle are available, they can be substituted into Newton's second law to obtain an ordinary differential equation, which is called the equation of motion.
Economics; Population dynamics; ... A simple example is Newton's second law of motion—the relationship between the displacement and the time of an object ...
However, in mathematics Newton's laws of motion can be generalized to multidimensional and curved spaces. Often the term Newtonian dynamics is narrowed to Newton's second law m a = F {\displaystyle \displaystyle m\,\mathbf {a} =\mathbf {F} } .
SR states that motion is relative and the laws of physics are the same for all experimenters irrespective of their inertial reference frames. In addition to modifying notions of space and time , SR forces one to reconsider the concepts of mass , momentum , and energy all of which are important constructs in Newtonian mechanics .
The dynamics of a rigid body system is described by the laws of kinematics and by the application of Newton's second law or their derivative form, Lagrangian mechanics. The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the ...