enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement.

  3. Linear equation - Wikipedia

    en.wikipedia.org/wiki/Linear_equation

    A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written

  4. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The equations 3x + 2y = 6 and 3x + 2y = 12 are inconsistent. A linear system is inconsistent if it has no solution, and otherwise, it is said to be consistent. [7] When the system is inconsistent, it is possible to derive a contradiction from the equations, that may always be rewritten as the statement 0 = 1. For example, the equations

  5. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  6. Equation - Wikipedia

    en.wikipedia.org/wiki/Equation

    Many identities are known in algebra and calculus. In the process of solving an equation, an identity is often used to simplify an equation, making it more easily solvable. In algebra, an example of an identity is the difference of two squares: = (+) which is true for all x and y.

  7. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    This equation is an equation only of y'' and y', meaning it is reducible to the general form described above and is, therefore, separable. Since it is a second-order separable equation, collect all x variables on one side and all y' variables on the other to get: (′) (′) =.

  8. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Once y is also eliminated from the third row, the result is a system of linear equations in triangular form, and so the first part of the algorithm is complete. From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution. One sees the solution is z = −1, y = 3, and x = 2. So ...

  9. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    A simple example is to solve ′ = and () =. We are trying to find a formula for y ( t ) {\displaystyle y(t)} that satisfies these two equations. Rearrange the equation so that y {\displaystyle y} is on the left hand side