enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Apache Spark - Wikipedia

    en.wikipedia.org/wiki/Apache_Spark

    The Dataframe API was released as an abstraction on top of the RDD, followed by the Dataset API. In Spark 1.x, the RDD was the primary application programming interface (API), but as of Spark 2.x use of the Dataset API is encouraged [3] even though the RDD API is not deprecated. [4] [5] The RDD technology still underlies the Dataset API. [6] [7]

  3. Dask (software) - Wikipedia

    en.wikipedia.org/wiki/Dask_(software)

    Dask delayed [20] is an interface used to parallelize generic Python code that does not fit into high level collections like Dask Array or Dask DataFrame. Python functions decorated with Dask delayed adopt a lazy evaluation strategy by deferring execution and generating a task graph with the function and its arguments.

  4. Dataframe - Wikipedia

    en.wikipedia.org/wiki/Dataframe

    Dataframe may refer to: A tabular data structure common to many data processing libraries: pandas (software) § DataFrames; The Dataframe API in Apache Spark;

  5. List of small groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    The other is the quaternion group for p = 2 and a group of exponent p for p > 2. Order p 4 : The classification is complicated, and gets much harder as the exponent of p increases. Most groups of small order have a Sylow p subgroup P with a normal p -complement N for some prime p dividing the order, so can be classified in terms of the possible ...

  6. Grouped data - Wikipedia

    en.wikipedia.org/wiki/Grouped_data

    Another method of grouping the data is to use some qualitative characteristics instead of numerical intervals. For example, suppose in the above example, there are three types of students: 1) Below normal, if the response time is 5 to 14 seconds, 2) normal if it is between 15 and 24 seconds, and 3) above normal if it is 25 seconds or more, then the grouped data looks like:

  7. Clustering coefficient - Wikipedia

    en.wikipedia.org/wiki/Clustering_coefficient

    In graph theory, a clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. Evidence suggests that in most real-world networks, and in particular social networks, nodes tend to create tightly knit groups characterised by a relatively high density of ties; this likelihood tends to be greater than the average probability of a tie randomly established ...

  8. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

  9. Flajolet–Martin algorithm - Wikipedia

    en.wikipedia.org/wiki/Flajolet–Martin_algorithm

    Within each group use the mean for aggregating together the results, and finally take the median of the group estimates as the final estimate. [ 5 ] The 2007 HyperLogLog algorithm splits the multiset into subsets and estimates their cardinalities, then it uses the harmonic mean to combine them into an estimate for the original cardinality.