Search results
Results from the WOW.Com Content Network
Potassium hydride is produced by direct combination of the metal and hydrogen at temperatures between 200 and 350 °C: 2 K + H 2 → 2 KH. This reaction was discovered by Humphry Davy soon after his 1807 discovery of potassium, when he noted that the metal would vaporize in a current of hydrogen when heated just below its boiling point.
For example, at 2,200 °C (2,470 K; 3,990 °F) about three percent of all H 2 O are dissociated into various combinations of hydrogen and oxygen atoms, mostly H, H 2, O, O 2, and OH. Other reaction products like H 2 O 2 or HO 2 remain minor. At the very high temperature of 3,000 °C (3,270 K; 5,430 °F) more than half of the water molecules are ...
The constant K 2 is for a reaction with these two micro-species as products, so that [LH] = [L 1 H] + [L 2 H] appears in the numerator, and it follows that this macro-constant is equal to the sum of the two micro-constants for the component reactions. K 2 = k 21 + k 22. However, the constant K 1 is for a reaction with these two micro-species as ...
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...
2 K(s) + 2 H 2 O(l) → 2 KOH(aq) + H 2 (g)↑ A reaction of potassium metal with water. Hydrogen is produced, and with potassium vapor, burns with a pink or lilac flame. Strongly alkaline potassium hydroxide is formed in solution. This reaction is exothermic and releases sufficient heat to ignite the resulting hydrogen in the presence of oxygen.
The neutralization reaction can be considered as the difference of the following two acid dissociation reactions HA ⇌ H + + A − K a,A = [A −][H +]/[HA] BH + ⇌ B + H + K a,B = [B][H +]/[BH +] with the dissociation constants K a,A and K a,B of the acids HA and BH +, respectively. Inspection of the reaction quotients shows that K = K a ...
rate = k[RCHO] 2 [OH −] + k'[RCHO] 2 [OH −] 2. The k' pathway implicates a reaction between the doubly charged anion (RCHO 2 2−) and the aldehyde. The direct transfer of hydride ion is evident from the observation that the recovered alcohol does not contain any deuterium attached to the α-carbon when the reaction is performed in the ...