enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. The term " butterfly effect " in popular media may stem from the real-world implications of the Lorenz attractor, namely that tiny changes in initial conditions evolve to completely different trajectories .

  3. Portal:Systems science/Picture - Wikipedia

    en.wikipedia.org/wiki/Portal:Systems_science/Picture

    The Lorenz attractor is a 3-dimensional structure corresponding to the long-term behavior of a chaotic flow, noted for its butterfly shape. The map shows how the state of a dynamical system (the three variables of a three-dimensional system) evolves over time in a complex, non-repeating pattern.

  4. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    Burke-Shaw chaotic attractor [8] continuous: real: 3: 2: Chen chaotic attractor [9] continuous: real: 3: 3: Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and ...

  5. Portal:Mathematics/Selected picture/3 - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...

  6. Chaos theory - Wikipedia

    en.wikipedia.org/wiki/Chaos_theory

    This attractor results from a simple three-dimensional model of the Lorenz weather system. The Lorenz attractor is perhaps one of the best-known chaotic system diagrams, probably because it is not only one of the first, but it is also one of the most complex, and as such gives rise to a very interesting pattern that, with a little imagination ...

  7. Hénon map - Wikipedia

    en.wikipedia.org/wiki/Hénon_map

    Hénon attractor for a = 1.4 and b = 0.3 Hénon attractor for a = 1.4 and b = 0.3. In mathematics, the Hénon map, sometimes called Hénon–Pomeau attractor/map, [1] is a discrete-time dynamical system. It is one of the most studied examples of dynamical systems that exhibit chaotic behavior.

  8. Malkus waterwheel - Wikipedia

    en.wikipedia.org/wiki/Malkus_waterwheel

    The Malkus waterwheel, also referred to as the Lorenz waterwheel or chaotic waterwheel, [1] is a mechanical model that exhibits chaotic dynamics. Its motion is governed by the Lorenz equations. While classical waterwheels rotate in one direction at a constant speed, the Malkus waterwheel exhibits chaotic motion where its rotation will speed up ...

  9. Attractor - Wikipedia

    en.wikipedia.org/wiki/Attractor

    Visual representation of a strange attractor. [1] Another visualization of the same 3D attractor is this video.Code capable of rendering this is available.. In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, [2] for a wide variety of starting conditions of the system.