Search results
Results from the WOW.Com Content Network
The Lorenz equations can arise in simplified models for lasers, [4] dynamos, [5] thermosyphons, [6] brushless DC motors, [7] electric circuits, [8] chemical reactions [9] and forward osmosis. [10] Interestingly, the same Lorenz equations were also derived in 1963 by Sauermann and Haken [11] for a single-mode laser.
The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...
The Lorenz attractor is a 3-dimensional structure corresponding to the long-term behavior of a chaotic flow, noted for its butterfly shape. The map shows how the state of a dynamical system (the three variables of a three-dimensional system) evolves over time in a complex, non-repeating pattern.
As shown in equation (2-1), the maximum value of the logistic map is given by r/4, which is the upper limit of the attractor. The lower limit of the attractor is given by the point f(r/4) where r/4 is mapped. Ultimately, the maximum and minimum values at which xn moves on the orbital diagram depend on the parameter r
The Lorenz attractor arises in the study of the Lorenz oscillator, a dynamical system.. In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve.
Visual representation of a strange attractor. [1] Another visualization of the same 3D attractor is this video.Code capable of rendering this is available.. In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, [2] for a wide variety of starting conditions of the system.
Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and Chen-like behavior. Chen-Lee system: continuous: real: 3: Chossat-Golubitsky symmetry map: Chua circuit [12 ...
Each segment is replaced by a cross formed by 4 segments. Measured: 2.01 ± 0.01: Rössler attractor: The fractal dimension of the Rössler attractor is slightly above 2. For a=0.1, b=0.1 and c=14 it has been estimated between 2.01 and 2.02. [31] Measured: 2.06 ± 0.01: Lorenz attractor