Search results
Results from the WOW.Com Content Network
The preparation of EtBr stands as a model for the synthesis of bromoalkanes in general. It is usually prepared by the addition of hydrogen bromide to ethene: H 2 C=CH 2 + HBr → H 3 C-CH 2 Br. Bromoethane is inexpensive and would rarely be prepared in the laboratory.
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2. It is a colourless, flammable gas with a faint "sweet and musky " odour when pure. [ 7 ] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds ).
For example, ethene + bromine → 1,2-dibromoethane: C 2 H 4 + Br 2 → BrCH 2 CH 2 Br. This takes the form of 3 main steps shown below; [3] Forming of a π-complex The electrophilic Br-Br molecule interacts with electron-rich alkene molecule to form a π-complex 1. Forming of a three-membered bromonium ion
3, is a bromine-based oxoanion. A bromate is a chemical compound that contains this ion. Examples of bromates include sodium bromate (NaBrO 3) and potassium bromate (KBrO 3). Bromates are formed many different ways in municipal drinking water. The most common is the reaction of ozone and bromide: Br − + O 3 → BrO − 3
Ethane can react with the halogens, especially chlorine and bromine, by free-radical halogenation. This reaction proceeds through the propagation of the ethyl radical: [36] Cl 2 → 2 Cl• C 2 H 6 • + Cl• → C 2 H 5 • + HCl C 2 H 5 • + Cl 2 → C 2 H 5 Cl + Cl• Cl• + C 2 H 6 → C 2 H 5 • + HCl
One can test for a bromide ion by adding an oxidizer. One method uses dilute HNO 3. Balard and Löwig's method can be used to extract bromine from seawater and certain brines. For samples testing for sufficient bromide concentration, addition of chlorine produces bromine (Br 2): [7] Cl 2 + 2 Br − → 2 Cl − + Br 2
Sodium bromide is an inorganic compound with the formula Na Br. It is a high-melting white, crystalline solid that resembles sodium chloride . It is a widely used source of the bromide ion and has many applications.
These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger ...