Search results
Results from the WOW.Com Content Network
26395 Ensembl ENSG00000169032 ENSMUSG00000004936 UniProt Q02750 P31938 RefSeq (mRNA) NM_002755 NM_008927 RefSeq (protein) NP_002746 NP_032953 Location (UCSC) Chr 15: 66.39 – 66.49 Mb Chr 9: 64.09 – 64.16 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse Dual specificity mitogen-activated protein kinase kinase 1 is an enzyme that in humans is encoded by the MAP2K1 gene. Function The ...
Mitogen-activated protein kinase kinase (also known as MAP2K, MEK, MAPKK) is a dual-specificity kinase enzyme which phosphorylates mitogen-activated protein kinase (MAPK). MAP2K is classified as EC 2.7.12.2. There are seven genes: MAP2K1 (a.k.a. MEK1) MAP2K2 (a.k.a. MEK2) MAP2K3 (a.k.a. MKK3) MAP2K4 (a.k.a. MKK4) MAP2K5 (a.k.a. MKK5) MAP2K6 (a ...
X-ray structure of the ERK2 MAP kinase in its active form. Phosphorylated residues are displayed in red. Rendering based on pdb entry 2ERK. Mitogen-activated protein kinases are catalytically inactive in their base form. In order to become active, they require (potentially multiple) phosphorylation events in their activation loops.
One of the first proteins known to be phosphorylated by ERK was a microtubule-associated protein (MAP). As discussed below, many additional targets for phosphorylation by MAPK were later found, and the protein was renamed "mitogen-activated protein kinase" (MAPK). The series of kinases from RAF to MEK to MAPK is an example of a protein kinase ...
Two similar protein kinases with 85% sequence identity were originally called ERK1 and ERK2. [2] They were found during a search for protein kinases that are rapidly phosphorylated after activation of cell surface tyrosine kinases such as the epidermal growth factor receptor. Phosphorylation of ERKs leads to the activation of their kinase activity.
The protein encoded by this gene is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation , differentiation , transcription regulation and development.
A MEK inhibitor is a chemical or drug that inhibits the mitogen-activated protein kinase enzymes MEK1 and/or MEK2. They can be used to affect the MAPK/ERK pathway which is often overactive in some cancers. (See MAPK/ERK pathway#Clinical significance.)
Calculating contacts is an important task in structural bioinformatics, being important for the correct prediction of protein structure and folding, thermodynamic stability, protein-protein and protein-ligand interactions, docking and molecular dynamics analyses, and so on.