Search results
Results from the WOW.Com Content Network
The Rayleigh scattering model breaks down when the particle size becomes larger than around 10% of the wavelength of the incident radiation. In the case of particles with dimensions greater than this, Mie's scattering model can be used to find the intensity of the scattered radiation.
Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset. Rayleigh scattering (/ ˈ r eɪ l i / RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation.
For larger diameters, the problem of electromagnetic scattering by spheres was first solved by Gustav Mie, and scattering by spheres larger than the Rayleigh range is therefore usually known as Mie scattering. In the Mie regime, the shape of the scattering center becomes much more significant and the theory only applies well to spheres and ...
It happens because of something called the Rayleigh effect, or Rayleigh scattering, named after a British scientist who first wrote about it in 1871. Bands of vivid blue, pink and orange light are ...
Scattering from any spherical particles with arbitrary size parameter is explained by the Mie theory. Mie theory, also called Lorenz-Mie theory or Lorenz-Mie-Debye theory, is a complete analytical solution of Maxwell's equations for the scattering of electromagnetic radiation by spherical particles (Bohren and Huffman, 1998).
The elastic light scattering phenomena called Rayleigh scattering, in which light retains its energy, was described in the 19th century. The intensity of Rayleigh scattering is about 10 −3 to 10 −4 compared to the intensity of the exciting source. [2] In 1908, another form of elastic scattering, called Mie scattering was discovered.
Tyndall scattering, i.e. colloidal particle scattering, [7] is much more intense than Rayleigh scattering due to the bigger particle sizes involved. [ citation needed ] The importance of the particle size factor for intensity can be seen in the large exponent it has in the mathematical statement of the intensity of Rayleigh scattering.
The dominant radiative scattering processes in the atmosphere are Rayleigh scattering and Mie scattering; they are elastic, meaning that a photon of light can be deviated from its path without being absorbed and without changing wavelength. Under an overcast sky, there is no direct sunlight, and all light results from diffused skylight radiation.