enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy density - Wikipedia

    en.wikipedia.org/wiki/Energy_density

    The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy. The adjacent figure shows the gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article).

  3. Energy density Extended Reference Table - Wikipedia

    en.wikipedia.org/wiki/Energy_density_Extended...

    Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000

  4. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    (Mass) Density (or volume density) ρ: Mass per unit volume kg/m 3: L −3 M: intensive Mean lifetime: τ: Average time for a particle of a substance to decay s T: intensive Molar concentration: C: Amount of substance per unit volume mol⋅m −3: L −3 N: intensive Molar energy: J/mol: Amount of energy present in a system per unit amount of ...

  5. Density of states - Wikipedia

    en.wikipedia.org/wiki/Density_of_states

    The density of states related to volume V and N countable energy levels is defined as: = = (()). Because the smallest allowed change of momentum for a particle in a box of dimension and length is () = (/), the volume-related density of states for continuous energy levels is obtained in the limit as ():= (()), Here, is the spatial dimension of the considered system and the wave vector.

  6. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The total energy density U can be similarly calculated, except the integration is over the whole sphere and there is no cosine, and the energy flux (U c) should be divided by the velocity c to give the energy density U: = (,) Thus / ⁡ ⁡ is replaced by ⁡, giving an extra factor of 4.

  7. Photon gas - Wikipedia

    en.wikipedia.org/wiki/Photon_gas

    In low-dimensional systems, for example in dye-solution filled optical microcavities with a distance between the resonator mirrors in the wavelength range where the situation becomes two-dimensional, also photon gases with tunable chemical potential can be realized. Such a photon gas in many respects behaves like a gas of material particles.

  8. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    The term Friedmann equation sometimes is used only for the first equation. [3] In these equations, R(t) is the cosmological scale factor, is the Newtonian constant of gravitation, Λ is the cosmological constant with dimension length −2, ρ is the energy density and p is the isotropic pressure.

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Each pair in the equation are known as a conjugate pair with respect to the internal energy. The intensive variables may be viewed as a generalized "force". An imbalance in the intensive variable will cause a "flow" of the extensive variable in a direction to counter the imbalance. The equation may be seen as a particular case of the chain rule.